TERCEIRA QUANTIZAÇÃO PELO SDCTIE GRACELI
TRANS-QUÂNTICA SDCTIE GRACELI, TRANSCENDENTE, RELATIVISTA SDCTIE GRACELI, E TRANS-INDETERMINADA.
FUNDAMENTA-SE EM QUE TODA FORMA DE REALIDADE SE ENCONTRA EM TRANSFORMAÇÕES, INTERAÇÕES, TRANSIÇÕES DE ESTADOS [ESTADOS DE GRACELI], ENERGIAS E FENÔMENOS DENTRO DE UM SISTEMA DE DEZ OU MAIS DIMENSÕES DE GRACELI, E CATEGORIAS DE GRACELI.
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS =
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.
x
+ FUNÇÃO TÉRMICA. [EQUAÇÃO DE DIRAC].
+ FUNÇÃO DE RADIOATIVIDADE
, + FUNÇÃO DE TUNELAMENTO QUÂNTICO.
+ ENTROPIA REVERSÍVEL
+ FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA
ENERGIA DE PLANCK
X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......ΤDCG
XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
x
sistema de dez dimensões de Graceli + DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..
- DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
xsistema de transições de estados, e estados de Graceli, ESTADOS DE GRACELI TÉRMICOS E ESTADOS DOS ELEMENTOS QUÍMICO [ESTADOS ESPECÍFICOS DA MATÉRIA E ESTRUTURAS DE ELEMENTOS QUÍMICOS] fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.
+ FUNÇÃO TÉRMICA.
+ FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..- DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.xsistema de transições de estados, e estados de Graceli, ESTADOS DE GRACELI TÉRMICOS E ESTADOS DOS ELEMENTOS QUÍMICO [ESTADOS ESPECÍFICOS DA MATÉRIA E ESTRUTURAS DE ELEMENTOS QUÍMICOS]fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
número atômico, estrutura eletrônica, níveis de energia - TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
- X
- CATEGORIAS DE GRACELI
- T l T l E l Fl dfG l
N l El tf l P l Ml tfefel Ta l Rl Ll * D
X [ESTADO QUÂNTICO].
- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
- X
- CATEGORIAS DE GRACELI
- T l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl * D
Colisão de Coulomb
Uma colisão de Coulomb é uma colisão elástica binária entre duas partículas carregadas interagindo através de seu próprio campo elétrico. Como com qualquer lei do inverso do quadrado, as trajetórias resultantes das partículas em colisão é uma órbita Kepleriana hiperbólica. Este tipo de colisão é comum em plasmas onde a energia cinética típica das pertículas é grande o suficiente para produzir um desvio significativo das trajetórias iniciais das partículas em colisão, e o efeito cumulativo de muitas colisões é considerado como alternativa.
Uma colisão de Coulomb é uma colisão elástica binária entre duas partículas carregadas interagindo através de seu próprio campo elétrico. Como com qualquer lei do inverso do quadrado, as trajetórias resultantes das partículas em colisão é uma órbita Kepleriana hiperbólica. Este tipo de colisão é comum em plasmas onde a energia cinética típica das pertículas é grande o suficiente para produzir um desvio significativo das trajetórias iniciais das partículas em colisão, e o efeito cumulativo de muitas colisões é considerado como alternativa.
Tratamento matemático para plasmas
Em um plasma uma colisão de Coulomb raramente resulta em uma grande deflexão. O efeito acumulativo de muitas pequenas colisões, entretanto, é muitas vezes maior que o efeito das poucas colisões de grande ângulo, portanto, é instrutivo considerar a dinâmica da colisão no limite das pequenas deflexões.
Pode-se considerar um elétron de carga -e e massa me passando um íon estacionário de carga +Ze e muito maior massa a uma distância b com uma velocidade v. A força perpendicular é (1/4πε0)Ze2/b2 na maior aproximação e a duração do encontro é sobre b/v. O produto destas expressões dividida pela massa é a carga em velocidade perpendicular:
- X
Em um plasma uma colisão de Coulomb raramente resulta em uma grande deflexão. O efeito acumulativo de muitas pequenas colisões, entretanto, é muitas vezes maior que o efeito das poucas colisões de grande ângulo, portanto, é instrutivo considerar a dinâmica da colisão no limite das pequenas deflexões.
Pode-se considerar um elétron de carga -e e massa me passando um íon estacionário de carga +Ze e muito maior massa a uma distância b com uma velocidade v. A força perpendicular é (1/4πε0)Ze2/b2 na maior aproximação e a duração do encontro é sobre b/v. O produto destas expressões dividida pela massa é a carga em velocidade perpendicular:
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Em matemática e física, teoria da dispersão ou espalhamento é um campo para o estudo e entendimento do espalhamento de ondas e partículas. Espalhamento de ondas corresponde à colisão e espalhamento de uma onda com algum objeto material, por exemplo luz solar espalhada por gotas de chuva para a formação de um arco-íris. Espalhamento também inclui a interação de bolas de bilhar numa mesa, o espalhamento Rutherford (ou mudança de ângulo) de partículas alfa por núcleos de ouro, o espalhamento (ou difração) de Bragg de elétrons e raios X por um grupo de átomos, e o espalhamento inelástico de um fragmento de fissão nuclear que atravessa uma lâmina fina. Mais precisamente, o espalhamento consiste no estudo de como soluções de equações diferenciais parciais, propagando livremente num "passado distante", se juntam e interagem umas com as outras ou com uma condição de contorno, e então propagam-se para um "futuro distante". O "problema de espalhamento direto" é o problema de determinar a distribuição da radiação espalhada (ou fluxo de partículas espalhadas) baseadas na características do centro espalhador. O problema inverso de espalhamento é o problema na determinação das características de um objeto (como por exemplo, sua forma, constituição interna) a partir de dados medidos de radiação ou partículas espalhadas pelo objeto.
Desde sua primeira enunciação para radiolocalização, o problema encontrou um vasto número de aplicações, tais como ecolocalização, pesquisas geofísicas, testes não destritivos, imagens médicas e na teoria quântica de campos, para mencionar alguns.
Em matemática e física, teoria da dispersão ou espalhamento é um campo para o estudo e entendimento do espalhamento de ondas e partículas. Espalhamento de ondas corresponde à colisão e espalhamento de uma onda com algum objeto material, por exemplo luz solar espalhada por gotas de chuva para a formação de um arco-íris. Espalhamento também inclui a interação de bolas de bilhar numa mesa, o espalhamento Rutherford (ou mudança de ângulo) de partículas alfa por núcleos de ouro, o espalhamento (ou difração) de Bragg de elétrons e raios X por um grupo de átomos, e o espalhamento inelástico de um fragmento de fissão nuclear que atravessa uma lâmina fina. Mais precisamente, o espalhamento consiste no estudo de como soluções de equações diferenciais parciais, propagando livremente num "passado distante", se juntam e interagem umas com as outras ou com uma condição de contorno, e então propagam-se para um "futuro distante". O "problema de espalhamento direto" é o problema de determinar a distribuição da radiação espalhada (ou fluxo de partículas espalhadas) baseadas na características do centro espalhador. O problema inverso de espalhamento é o problema na determinação das características de um objeto (como por exemplo, sua forma, constituição interna) a partir de dados medidos de radiação ou partículas espalhadas pelo objeto.
Desde sua primeira enunciação para radiolocalização, o problema encontrou um vasto número de aplicações, tais como ecolocalização, pesquisas geofísicas, testes não destritivos, imagens médicas e na teoria quântica de campos, para mencionar alguns.
Base conceitual
Os conceitos usados na teoria de espalhamento têm diferentes nomes em diferentes campos. O objetivo dessa sessão é apontar ao leitor alguns termos comuns.
Os conceitos usados na teoria de espalhamento têm diferentes nomes em diferentes campos. O objetivo dessa sessão é apontar ao leitor alguns termos comuns.
Alvos compostos e equações de alcance
Quando um alvo é um conjunto de vários centros espalhadores cujas posições relativas variam de forma imprevisível, é costumeiro que se pense em uma equação de alcance cujos argumentos tomem diferentes formas em diferentes áreas de aplicação. O caso mais simples considera uma interação que remove partículas de um "feixe não espalhado" a uma taxa uniforme que é proporcional ao fluxo incidente de partículas por unidade de área por unidade de tempo, ou seja, que
- X
Quando um alvo é um conjunto de vários centros espalhadores cujas posições relativas variam de forma imprevisível, é costumeiro que se pense em uma equação de alcance cujos argumentos tomem diferentes formas em diferentes áreas de aplicação. O caso mais simples considera uma interação que remove partículas de um "feixe não espalhado" a uma taxa uniforme que é proporcional ao fluxo incidente de partículas por unidade de área por unidade de tempo, ou seja, que
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
onde "Q" é um coeficiente de interação e "x" é a distância viajada no alvo.
A equação diferencial ordinária de primeira ordem acima tem soluções da forma:
- X
onde "Q" é um coeficiente de interação e "x" é a distância viajada no alvo.
A equação diferencial ordinária de primeira ordem acima tem soluções da forma:
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
onde Io é o fluxo inicial, comprimento de caminho Δx ≡ x − xo, a segunda igualdade define uma interação de livre caminho médio λ, a terceira usa o número de alvos por unidade de volume, η, para definir uma área de seção de choque σ, e a última usa a densidade de massa do alvo, ρ, para definir uma densidade de livre caminho médio, τ. Dessa forma, podemos relacionar essas quantidades por meio de Q = 1/λ = ησ = ρ/τ, como mostrada na figura à esquerda.
onde Io é o fluxo inicial, comprimento de caminho Δx ≡ x − xo, a segunda igualdade define uma interação de livre caminho médio λ, a terceira usa o número de alvos por unidade de volume, η, para definir uma área de seção de choque σ, e a última usa a densidade de massa do alvo, ρ, para definir uma densidade de livre caminho médio, τ. Dessa forma, podemos relacionar essas quantidades por meio de Q = 1/λ = ησ = ρ/τ, como mostrada na figura à esquerda.
Teoria quântica dos campos locais
A Teoria quântica dos campos locais, ou Sistema axiomático Haag-Kastler para a teoria quântica dos campos, ou ainda Teoria quântica dos campos algébrica foi proposta pelos físicos Rudolf Haag e Daniel Kastler em 1964.
A teoria é uma aplicação local da física quântica numa C*-álgebra. Os axiomas desta teoria são definidos em termos algébricos dados por todo conjunto aberto num espaço de Minkowski, e mapeados entre eles.
A Teoria quântica dos campos locais, ou Sistema axiomático Haag-Kastler para a teoria quântica dos campos, ou ainda Teoria quântica dos campos algébrica foi proposta pelos físicos Rudolf Haag e Daniel Kastler em 1964.
A teoria é uma aplicação local da física quântica numa C*-álgebra. Os axiomas desta teoria são definidos em termos algébricos dados por todo conjunto aberto num espaço de Minkowski, e mapeados entre eles.
Definição
Permitindo que Mink seja a categoria de subconjuntos abertos de um espaço de Minkowski M com função inclusão como morfismo. É dado um functor contravariante de Mink para uC*alg, a categoria de C*álgebras unitais, já que todo morfismo em Mink se mapeia para um monomorfismo num uC*alg.
O grupo de Poincaré age continuamente no Mink. Ali existe o produto fibrado desta ação, que é continua na norma operacional da Covariância de Lorentz: .
O espaço de Minkowski possui uma estrutura casual. Logo se um conjunto aberto V se encontra no complemento casual de um conjunto aberto U, então a imagem do mapeamento
e
- X
Permitindo que Mink seja a categoria de subconjuntos abertos de um espaço de Minkowski M com função inclusão como morfismo. É dado um functor contravariante de Mink para uC*alg, a categoria de C*álgebras unitais, já que todo morfismo em Mink se mapeia para um monomorfismo num uC*alg.
O grupo de Poincaré age continuamente no Mink. Ali existe o produto fibrado desta ação, que é continua na norma operacional da Covariância de Lorentz: .
O espaço de Minkowski possui uma estrutura casual. Logo se um conjunto aberto V se encontra no complemento casual de um conjunto aberto U, então a imagem do mapeamento
e
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Comuta se é o complemento casual do conjunto aberto U, então é um isomorfismo.
Um estado com respeito a uma C*-álgebra é uma Função linear positiva com norma unitária. Se nós possuirmos um estado sobre , nós podemos obter o traço parcial e conseguir estados associados com para cada conjunto aberto.
O efeito Unruh, descoberto em 1976 por Bill Unruh da Universidade da Colúmbia Britânica, é a predição de que um observador acelerado vai perceber radiação de buracos negros enquanto um outro observador em repouso inercial não irá observar nenhum. Em outras palavras, o observador acelerado vai se encontrar em um ambiente mais aquecido. O estado quântico que é visto como um estado estático pelo observador inercial, é visto como um equilíbrio termodinâmico pelo observador uniformemente acelerado.
Comuta se é o complemento casual do conjunto aberto U, então é um isomorfismo.
Um estado com respeito a uma C*-álgebra é uma Função linear positiva com norma unitária. Se nós possuirmos um estado sobre , nós podemos obter o traço parcial e conseguir estados associados com para cada conjunto aberto.
O efeito Unruh, descoberto em 1976 por Bill Unruh da Universidade da Colúmbia Britânica, é a predição de que um observador acelerado vai perceber radiação de buracos negros enquanto um outro observador em repouso inercial não irá observar nenhum. Em outras palavras, o observador acelerado vai se encontrar em um ambiente mais aquecido. O estado quântico que é visto como um estado estático pelo observador inercial, é visto como um equilíbrio termodinâmico pelo observador uniformemente acelerado.
Teoria
Unruh demonstrou que mesmo a noção de vácuo depende do caminho que o observador percorre pelo espaço-tempo. Do ponto de vista do observador acelerado, o vácuo do observador inercial vai se assemelhar a um estado contendo várias partículas em um equilíbrio térmico – um gás aquecido. Apesar do Efeito Unruh parecer não intuitivo, faz perfeito sentido se a idéia de vácuo for corretamente interpretada.
Na física moderna o conceito de vácuo não é o mesmo que "espaço-vazio", como tudo mais no espaço é preenchido por campos quânticos que formam o universo. O vácuo é simplesmente o menor estado de energia possível deste campo.
Segundo a teoria da relatividade restrita, dois observadores se movendo relativamente em sentidos opostos devem utilizar diferentes coordenadas de tempo. Se estes observadores estiverem acelerados eles também deverão utilizar diferentes coordenadas espaciais. Cada um dos observadores irá enxergar diferentes estados quânticos e diferentes vácuos.
Em alguns casos, o vácuo de um observador não é sequer no espaço do espaço quântico do outro observador. Em termos técnicos, isto é por causa dos dois vácuos levarem a representações completamente diferentes do campo quântico.
A existência da radiação de Unruh pode ser referenciada para o horizonte de eventos, colocando-se no mesmo esboço conceitual da radiação Hawking. Por outro lado, o efeito Unruh mostra que a definição do que constitui uma partícula depende do estado inercial do observador.
Unruh demonstrou que mesmo a noção de vácuo depende do caminho que o observador percorre pelo espaço-tempo. Do ponto de vista do observador acelerado, o vácuo do observador inercial vai se assemelhar a um estado contendo várias partículas em um equilíbrio térmico – um gás aquecido. Apesar do Efeito Unruh parecer não intuitivo, faz perfeito sentido se a idéia de vácuo for corretamente interpretada.
Na física moderna o conceito de vácuo não é o mesmo que "espaço-vazio", como tudo mais no espaço é preenchido por campos quânticos que formam o universo. O vácuo é simplesmente o menor estado de energia possível deste campo.
Segundo a teoria da relatividade restrita, dois observadores se movendo relativamente em sentidos opostos devem utilizar diferentes coordenadas de tempo. Se estes observadores estiverem acelerados eles também deverão utilizar diferentes coordenadas espaciais. Cada um dos observadores irá enxergar diferentes estados quânticos e diferentes vácuos.
Em alguns casos, o vácuo de um observador não é sequer no espaço do espaço quântico do outro observador. Em termos técnicos, isto é por causa dos dois vácuos levarem a representações completamente diferentes do campo quântico.
A existência da radiação de Unruh pode ser referenciada para o horizonte de eventos, colocando-se no mesmo esboço conceitual da radiação Hawking. Por outro lado, o efeito Unruh mostra que a definição do que constitui uma partícula depende do estado inercial do observador.
Temperatura Unruh
A temperatura de Unruh é a temperatura efetiva experimentada por um detector uniformemente acelerado em um campo de vácuo, dada por:[1]
- X
A temperatura de Unruh é a temperatura efetiva experimentada por um detector uniformemente acelerado em um campo de vácuo, dada por:[1]
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
onde ħ é a constante de Planck reduzida, a é a aceleração local, c é a velocidade da luz, e kB é a constante de Boltzmann. Dessa forma, por exemplo, uma aceleração própria de 2.47×1020 m·s-2 corresponde aproximadamente a uma temperatura de 1 K. Inversamente, uma aceleração de 1 m·s-2 corresponde a uma temperatura de 4.06×10−21 K.
A temperatura de Unruh tem a mesma forma da temperatura de Hawking TH = ħg2πckB
X
onde ħ é a constante de Planck reduzida, a é a aceleração local, c é a velocidade da luz, e kB é a constante de Boltzmann. Dessa forma, por exemplo, uma aceleração própria de 2.47×1020 m·s-2 corresponde aproximadamente a uma temperatura de 1 K. Inversamente, uma aceleração de 1 m·s-2 corresponde a uma temperatura de 4.06×10−21 K.
A temperatura de Unruh tem a mesma forma da temperatura de Hawking TH = ħg2πckB
X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
para um buraco negro. Tal expressão foi obtida por Stephen Hawking de maneira independente por volta da mesma época. Por isso, tais equações são referenciadas também como Temperatura de Hawking–Unruh.[2]
para um buraco negro. Tal expressão foi obtida por Stephen Hawking de maneira independente por volta da mesma época. Por isso, tais equações são referenciadas também como Temperatura de Hawking–Unruh.[2]
Fórmula da variação de Compton
Compton usou uma combinação de três fundamentais fórmulas representando os diversos aspectos da física clássica e moderna, combinando-os para descrever o procedimento quântico da luz.
- Luz como uma partícula;
- Dinâmica Relativística;
- Trigonometria.
O resultado final nos dá a Equação do Espalhamento de Compton:
- X
Compton usou uma combinação de três fundamentais fórmulas representando os diversos aspectos da física clássica e moderna, combinando-os para descrever o procedimento quântico da luz.
- Luz como uma partícula;
- Dinâmica Relativística;
- Trigonometria.
O resultado final nos dá a Equação do Espalhamento de Compton:
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
onde
- é o comprimento de onda do fóton antes do espalhamento,
- é o comprimento de onda do fóton depois do espalhamento,
- me é a massa do elétron,
- é conhecido como o comprimento de onda de Compton,
- θ é o ângulo pelo qual a direção do fóton muda,
- h é a constante de Planck, e
- c é a velocidade da luz no vácuo.
Coletivamente, o comprimento de onda de Compton é 2.43×10-12 m.
Principais pressupostos:
• Colisão entre uma carga pontual, mais um núcleo pesado com carga Q=Ze é um projétil leve com carga q=ze é considerada como sendo elástica.
• Momento e energia são conservados.
• As partículas interagem através da força de Coulomb.
• A distância vertical onde o projétil se encontra a partir do centro do alvo, o parâmetro de impacto b , determinam o ângulo de dispersão θ.
A relação entre o ângulo de dispersão θ, a energia cinética inicial
e o parâmetro de impacto b é dado pela relação
(1,1)
onde z = 2, para partículas-α e Z = 79 de ouro.
X
onde
- é o comprimento de onda do fóton antes do espalhamento,
- é o comprimento de onda do fóton depois do espalhamento,
- me é a massa do elétron,
- é conhecido como o comprimento de onda de Compton,
- θ é o ângulo pelo qual a direção do fóton muda,
- h é a constante de Planck, e
- c é a velocidade da luz no vácuo.
Coletivamente, o comprimento de onda de Compton é 2.43×10-12 m.
Principais pressupostos:
• Colisão entre uma carga pontual, mais um núcleo pesado com carga Q=Ze é um projétil leve com carga q=ze é considerada como sendo elástica.
• Momento e energia são conservados.
• As partículas interagem através da força de Coulomb.
• A distância vertical onde o projétil se encontra a partir do centro do alvo, o parâmetro de impacto b , determinam o ângulo de dispersão θ.
A relação entre o ângulo de dispersão θ, a energia cinética inicial
e o parâmetro de impacto b é dado pela relação
(1,1)
onde z = 2, para partículas-α e Z = 79 de ouro.
X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
X
X
Comentários
Postar um comentário